

"Design of non-viral gene delivery systems: input from live cell imaging studies"

Chantal PICHON Center for Molecular Biophysics-UPR 4301- CNRS-Orléans, France

The InnoMol Bioimaging Workshop Zagreb, October 20–22, 2014

Nucleic acids delivery

* Basic and applied researches* Therapeutic applications

Viral vectors Adeno-Associated virus Adenovirus Retrovirus Physical methods Electrotransfer Gene Gun Ultrasound Laser

Chemical vectors Lipides, Polymers Biomaterials

Intracellular Barriers

NLS : Nuclear Localisation Signal

Pichon et al., 2010 Current Opin. Biotech.

Cell Imaging & intracellular investigations

- -Endocytosis pathways investigation
- -plasmid DNA & vector intracellular distribution
- -pDNA dissociation from vectors
- -Improving pDNA nuclear import with KB motifs
- -Improving cytosolic diffusion with E3 14.7K peptide
- Real time cellular imaging: colocalization experiments, videomicroscopy
- Fluorescence-based methods:
- -Fluorescence Recovery after Photo bleaching (FRAP)
- -Förster Resonance Energy Transfer (FRET)
- -Fluorescence life Time Imaging (FLIM)

Nucleic acids Formulations

Histidine-based chemical vectors for endosomal escape

Midoux *et al.,* (2009) *Br. J. Pharmacol.* **157**, 166-178 Mével *et al.,* ChemBioChem 2008, 9: 1462-1471 Mével *et al.,* ChemComm. 2008, 21:3124-3126 Pichon et al., (2001) *Adv. Drug Delivery Rev.* **53**, 75-94. Midoux & Monsigny (1999) *Bioconjugate Chem.* **10**, 406-411

Mével, M et al., FR 07 57955. 28 Septembre 2007 Cheradame, et al. FR0851434 du 5 mars 2008.

Cellular Uptake & Endosomal escape

Endosomal Escape

Histidylated chemical vectors

Histidylated polylysine

Gel retardation assay (10µg pDNA)

~100 nm, 20 mV

Table 1. Size and ζ Potential of Histidylated Polyplexes^

		polymer/pDNA weight ratio (µg/µg)				
	ζ potential (mV)		size (nm)			
	2	3	4	2	3	4
His ₁₀₉ -pLK	$+17.5 \pm 3$ (+32)*	$+18 \pm 2$ (+33)	$+17 \pm 3$ (+34)	140 ± 10	110 ± 10	110 ± 10
AcHis ₁₀₀ -pLK	-18 ± 2 (+32)	-5 ± 3 (+34)	$+14 \pm 3$ (+37)	179 ± 10	170 ± 10	165 ± 15
pLK	$+10 \pm 3$ (+12)	+17 ± 3 (+18)	+22 ± 3 (+22)	100 ± 10	100 ± 10	90 ± 10

Do polyplexes reach acidic compartments once uptaken by cells?

Endocytosis pathways

Zeiss LSM 510 Meta Confocal microscopy Flow cytometry BD LSR

Tools to investigate the ntracellular routing

Co-localization experiments

Endocytosis pathways

HepG2 cells: transfection with His-pLK/pDNA, 30 min 37°C

<u>25 μm</u>

F-DNA/R-Cholera toxin B

Cholera toxin B binds to GM1 ganglioside

Goncalves et al., Mol. Ther. 2004. 10: 373-385.

Colocalization experiments: EEA1, Transferrin receptor, LAMP1, Rab11

2h at 4°C, 30 min at 37°C

Rho-Transferrin receptor FITC-pDNA

30 min 37°C, 30 min chase

Rab 11 F-pDNA/His-vector Rab 11⁺ endosomes: Recycling endosomes

Epitope specific flow cytometry sorting : organelles preparation

TfR- and EEA1-positive vesicles containing pDNA (%) TfR⁺ TfR++/EEA1++ TfR⁻/EEA1⁺⁺ TfR⁻/EEA1⁺ Chase U U N N+C Ν N+C N N+C N+C U U Ν 5 min 9.5 + 2 18 ± 0.5 ND 20 + 90 12 + 0.50 ND 0 10 0 0 28 ± 5 9.5 ± 1 14 ± 0.5 8.6 ± 0.2 11 0 0 0 0 20 + 1 29 ± 4 30 min 0 120 min 25 + 5 15 ± 4.5 0 19.5 ± 1 17 8 ± 0.3 0 11 0 0 0 33 + 5

TABLE 1: Involvement of clathrin lattices, cytoskeleton, and macropinocytosis on polyplex uptake			HepG2 cells
His-p (9	olyplex uptake of control)	Transferrin uptake (% of control)	
Hypertonic medium	45 ± 5	36 ± 6	Clathrin-dependent
Cytosolic acidification	45 ± 5	-	
Chlorpromazine	50 ± 5	-	
MBC + lovastatin	50 ± 8	-	Cholesterol
Filipin III	53 ± 11	80 ± 5	
Chlorpromazine +	0 ± 5	-	
Filipin III			
CytD*	45 ± 1	_	Cytoskeleton
Noc*	65 ± 2.5	_	
CytD* + Noc*	45 ± 1	_	
PMA	130 ± 5	90 ± 5	
DMA	58 ± 5	-	
Wortmannin	59.5 ± 5	81 ± 2	
Genestein	81 ± 12	76 ± 2	
DMA + PMA	45 ± 3	-	
PMA + filipin III	71 ± 8	-	

Flow cytometry of Flu-DNA/His-pLK HepG2 cells

Goncalves 2004 Mol Ther

Schematic model of the uptake and intracellular routing of 1st His-polyplexes

Histidylated Polyethyleneimine

Investigation of intracellular pDNA condensation state during endocytosis

FRET and Photobleaching experiments

Forster resonance energy transfer (FRET)

Spatial resolution (0.01 μ m) \gg conventional microscopy ($\lambda/2$) \Rightarrow Molecular interaction

-Non radiative

-Requires overlap of the emission band of the donor and the absorption band of the

acceptor

Ro: Förster distance

The distance for which the energy transfer efficiency is equal to 50%, Ro <100 Å

h.v1: 488nm, h.v2: 520nm h.v3: 620 nm

Fluo/Rho: Ro= 51.3 Å

Transfer = pDNA condensation No transfer = no condensation

FRAP : Fluorescence Recovery After Photobleaching

Measurement of transports and molecules exchange between compartments

1976: originally used in studies of plasma membranes -diffusion rates -mobile and bound fractions

NATURE CELL BIOLOGY VOL 4 APRIL 2002 Partha Roy*, et al.,

Photobleaching of the acceptor to validate the FRET

Cells transfected with F-DNA / HIS polyplexes. Photobleaching of rhodamine by 800 pulses at 543 nm

Photobleaching of Rhodamine \rightarrow increases the fluorescence of Fluorescein due to the destruction of Rhodamine acceptor

Intracellular trafficking of His-polyplexes

Improvement of pDNA nuclear import

Optimized KB sites to enhance pDNA nuclear import

^{5'-}CTG<u>GGGACTTTCC</u>AGCTG<u>GGGACTTTCC</u>AGCTG<u>GGGACTTTCC</u>AGG-³

www.rohan.sdsu.edu/

Hela cells: transfection with 3NF bearing pDNA Crosslinking Immunoprecipitation with anti-NFkB, <u>PCR with luciferase primers</u>

Quantification of pDNA spots localized inside the nucleus

Fluorescence emissions collected in multia tracking mode.

C2C12 cells 200 0 3 5 1 Time (h) **BAY 11-7085** 3NF-luc-3NF inhibiteur NFkB **CMV-luc** inhibiteur NFkB

Breuzard et al., NAR 2008

Hela cells transfected with His-vectors and pDNA bearing NFKB sequences

Table 1. κB sites sequences			
Name	Nucleotide sequences		
3NF	5′-CTG <u>GGGACTTTCC</u> AGCTG <u>GGGACTTTCC</u> AGCTG- GGGACTTTCCAGG-3′		
NF NE Strat	$(5'-GGGAATTTCC-3')_4$		
NF-Ig	5'-TG <u>GGGACTTTCC</u> GCTG <u>GGGACTTTCC</u> GCTG- <u>GGGACTTTCC</u> GC-3'		

Hydrodynamic injection

Improving the cytosolic diffusion of pDNA

Cytosolic diffusion

<u>FRAP</u> : Fluorescence recovery after photobleaching

Principle of FRAP experiment

FRAP : Fluorescein-labeled DNA diffusion in microinjected HeLa cells.

DNA fragments larger than 2000 bp are immobile in the cytosol

19931

Dynein and cytosolic diffusion towards nucleus

Virus	Protein that binds to a dynein polypeptide	Dynein protein
	UL34	LIC
Herpes simplex	UL9	LC8
	UL35(VP26)	TCTEL1
Herpes virus 7	UL19	LC8
African swine fever	p54	LC8
Mokola	Viral phosphoprotein	LC8
Rabies	Viral phosphoprotein	LC8
Papillomavirus	Capsid protein L2	TCTEL1
	Protein E4	LC8
Borna disease	Viral glycoprotein G	LC7
Mason-Pfizer monkey	Viral Matrix	TCTEL1
Adenovirus	Viral capsid hexon	LIC
Ebola Virus	Viral phosphoprotein	LC8

Interaction with cargo

Dynein molecular motor - Molecular protein complex (1.2 MDa)

- Walks along microtubules toward the minus end (toward the centrosome).
- 3 Homodimers Light Chains: TCTEL1 - LC8 - LC7

Dynein Light chains: LC8 or TCTEL1

[Kardon & Vale, 2009]

E3 14.7K Protein and FIP-1

[Hortwitz et al., 2004]

E3-14.7K adenoviral protein strategy

E3-14.7K

- Adenoviral protein
- Early phase E3
- 14.7kDa

- Four partners FIPs (Fourteen.7K interacting protein)

[Foster & Kim, 2002; Wold et al., 1999; Li et al., 1998]

Step Three

Exploit the peptide for active cytosolic diffusion of pDNA

Hela cells expressing: -eGFP-tubulin -FIP1-eGFP -E3 14.7K-eGFP

> Similar intracellular distribution

Fluorescence Lifetime Measurement

FLIM: - presence of FRET visualized by the lifetime of the excitation state of spatially distributed fluorescent molecules

-independent of the local concentrations of fluorescence molecules and the excitation intensity.

Color coded fluorescence lifetime image, distribution of lifetimes and lifetime decay curve .

- Inverted Leica SP2 confocal microscope coupled to a 80-MHz mode-locked Mai-Tai® Ti:Sapphire tunable laser (720-920 nm, 100 fs laser pulse; Spectra Physics) for two-photon excitation.
- Time-resolved fluorescence intensity: time-correlated single-photon counting approach.
- Donnor: eGFP; Acceptors : td-Tomato and DsRed2

E3-14.7K interaction network

FIP-1 interacts with TCTEL1 (Dynein LC) / Microtubules

E3-14.7K ?

Indentification of E3-14.7K/FIP-1 interacting peptide

Screening of five overlapping peptides of E3-14.7K:

P38-57 P65-84 P106-125 VNLHQCKRGIFCLVKQAKVTYDSNTTGHRLSYKLPTKRQKLVVMVGEKPITITQHSVETEGCIHSPCQGPEDLCTLIKTLCGLKDLIPFN P50.60 P70.08

- Fixed amount of cytosolic extracts of Hela cells expressing E3 14.7K + increasing amount of FIP-1-eGFP recombinant protein
- Mithras LB 940 with MikroWin 2000 software (RLuc filter, 485 ± 10 nm; YFP filter, 530 ± 12 nm
- BRET ratio is the emission signals at 530 nm divided by emission signals at 485 nm

Indentification of E3-14.7K/FIP-1 interacting peptideScreening of five overlapping peptides of E3-14.7K:P38-57P65-84P106-125

VNLHQCKRGIFCLVKQAKVTYDSNTTGHRLSYKLPTKRQKLVVMVGEKPITITQHSVETEGCIHSPCQGPEDLCTLIKTLCGLKDLIPFN

|--|--|--|

BRET competition in vitro

BRET: Interaction in cellulo

P79-98 inhibits Energy transfer between E3-14.7K / FIP-1

Energy transfer in live cells between E3-14.7K /FIP-1 and P79-98 /FIP-1

[Pigeon et. al., 2013]

Indentification of E3-14.7K/FIP-1 interacting peptide

Peptide P79-98 of E3-14.7K interacts with microtubules *in cellulo* and *in vitro*

- eGFP-Tubulin P79-98-Tomato

--- eGFP-Tubulin P38-57-Tomato

FRET efficiency quantified using the SPCImage software(Becker & Hickl GmbH).

Intracellular dynamic of p79-98/pDNA

<u>HeLa eGFP-Tubulin</u> Transfection His-IPEI polyplexes Cy3-pDNA-P79-98 2 hours after transfection

Polyplexes

P79-98 conjugated to pDNA induces microtubule-mediated transport of pDNA *in cellulo*.

[Pigeon et. al., 2013]

Impact of p79-98 on transfection efficiency

Conclusions

•Identification of P798-98 peptide of E3-14.7K that interacts with FIP-1

•FIP-1 binds to TCTEL1 light chain of dynein: movement along microtubules

- P79-98 conjugated to pDNA induces microtubule-mediated transport of pDNA in cellulo
- •Single particle tracking needs to be performed to understand the process
- pDNA-P79-98 drastically increases by 150% the number of transfected cells.
- P79-98 on pDNA or on the vector: which option is the best?

Summary

Trafficking:

Colocalization experiments & epitopespecific flow cytometric sorting allowed us to delineate the endocytosis pathways and intracellular routing of pDNA complexes

Segregation, condensation state:

FRET, Photobleaching are powerful tools to determine the state of pDNA complexes during their intracellular routing

Nuclear import:

Improvement of transfection efficiency by inserting 2x3NF KB sites in the backbone of pDNA.

More resolutive technique is required to follow the pDNA entry in the nucleus.

Cytosolic migration:

Confocal microscopy, FLIM BRET and videomicroscopy experiments clearly validated that P79-98 from E3 14.7K promotes microtubules binding of pDNA and its transport toward the nuclear envelope upon polyplexes transfection.

Enhancement of transfection efficiency

Building artificial virus

Team: « Nucleic acids by non viral systems »

Patrick Midoux, Chantal Pichon, Jean Marc Malinge, Jean-Pierre Gomez Patrick Baril, Anthony Delalande Cristine Goncalves, Loic Lebegue, Virginie Mallard, Rudy Clémençon, Chloé Leduc, <u>Postdocs:</u> Gilles Breuzard, Benoit Maunit, Ludivine Billiet, Julie Lodewick, Laure Magreangeas, Lily Mongin <u>Ph.D.students</u>: Thomas Thibault, Federico Perche, Lucie Pigeon, Marie-Pierre Gosselin <u>Master students</u>: Magdalena Tertil, Joanna Kowal, Jakub Tomacsz, Kadija Belghit, Homam Shahoud

UMR CNRS 6521, Brest Paul-Alain Jaffrès

ENSC Rennes Thierry Benvegnu

University Evry

Philippe Guégan Hervé Cheradame

ENS Cachan

Patric Tauc Eric Deprez Brigitte Hartmann

